Domination, Edge Domination and Roman Domination in Human Chain Graph
نویسندگان
چکیده
منابع مشابه
A characterization relating domination, semitotal domination and total Roman domination in trees
A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...
متن کاملRoman Domination
In his article published in 1999, Ian Stewart discussed a strategy of Emperor Constantine for defending the Roman Empire. Motivated by this article, Cockayne et al.(2004) introduced the notion of Roman domination in graphs. Let G = (V,E) be a graph. A Roman dominating function of G is a function f : V → {0, 1, 2} such that every vertex v for which f(v) = 0 has a neighbor u with f(u) = 2. The we...
متن کاملWeak edge Roman domination in graphs
Let G = (V,E) be a graph and let f be a function f : E → {0, 1, 2}. An edge x with f(x) = 0 is said to be undefended with respect to f if it is not incident to an edge with positive weight. The function f is a weak edge Roman dominating function (WERDF) if each edge x with f(x) = 0 is incident to an edge y with f(y) > 0 such that the function f ′ : E → {0, 1, 2}, defined by f ′(x) = 1, f ′(y) =...
متن کاملOn the signed Roman edge k-domination in graphs
Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...
متن کاملOn the Roman Edge Domination Number of a Graph
For an integer n ≥ 2, let I ⊂ {0, 1, 2, · · · , n}. A Smarandachely Roman sdominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a function f : V → {0, 1, 2, · · · , n} satisfying the condition that |f(u)− f(v)| ≥ s for each edge uv ∈ E with f(u) or f(v) ∈ I . Similarly, a Smarandachely Roman edge s-dominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1724/1/012023